Skip to main content
Log in

Forecasting Oil Production Time Series with a Population-Based Simulated Annealing Method

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper addresses the oil production forecasting problem, closely related to the estimation of reserves remaining in oil fields. We present a new method, named SAM-oil, which combines simulated annealing metaheuristic with evolutionary computing techniques, statistical analysis and quality assessment of solutions. The method implements a learning-based scheme for pre-processing, modeling and forecasting of monthly oil production time series. Accuracy of point forecasts is compared between SAM-oil and a typical technique in petroleum engineering, known as decline curve analysis, as well as with well-established forecasting methods such as ARIMA, neural networks, and some members of the exponential smoothing family. For the study case, a clustering process has been conducted in order to map forecasting difficulty for three clusters of time series. Our experiments evidence that SAM-oil’s is a very competitive method in oil production forecasting: SAM-oil’s forecasts outperform, in average, those from decline curve analysis and the other forecasting methods, both for the clusters and for the whole set of the experimental time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Energy Information Administration: International energy outlook 2013. Technical Report, U.S. Department of Energy (2013)

  2. Rahuma K.M., Mohamed H., Hissein N., Giuma S.: Prediction of reservoir performance applying decline curve analysis. Int. J. Chem. Eng. Appl. 4, 74–77 (2013)

    Google Scholar 

  3. Makinde F.A., Orodu O.D., Ladipo A.O., Anawe P.A.L.: Cumulative production forecast of an oil well using simplified “hyperbolic–exponential” decline models. Glob. J. Res. Eng. 12(2), 27–40 (2012)

    Google Scholar 

  4. Chi, M.; Frausto-Solis, J.; Sheremetov, L.: Soft computing algorithms for nonlinear regression applied to decline curve analysis. In: Villa-Vargas, L., Sheremetov, L., Haasis, H.D. (eds) Workshop on Operations Research and Data Mining, ORADM 2012, Workshop Proceedings, pp. 210–217 (2012)

  5. Box G.E.P., Jenkins G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1976)

    MATH  Google Scholar 

  6. Gooijer J.G.D, Hyndman R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006)

    Article  Google Scholar 

  7. Ediger V.Ş., Akar S., Uğurlu B.: Forecasting production of fossil fuel sources in Turkey using a comparative regression and (ARIMA) model. Energy Policy 34(18), 3836–3846 (2006)

    Article  Google Scholar 

  8. Ayeni B.J., Pilat R.: Crude oil reserve estimation: an application of the autoregressive integrated moving average (ARIMA) model. J. Pet. Sci. Eng. 8(1), 13–28 (1992)

    Article  Google Scholar 

  9. Yusof, N.M.; Rashid, R.S.A.; Zamzulani, M.: Malaysia crude oil production estimation: an application of ARIMA model. In: International Conference on Science and Social Research 2010, Kuala Lumpur, Malaysia, pp. 1255–1259 (2010)

  10. Chithra Chakra, N.; Song, K.Y.; Saraf, D.N.; Gupta, M.M.: Production forecasting of petroleum reservoir applying higher-order neural networks (HONN) with limited reservoir data. Int. J. Comput. Appl. 72, 23–35 (2013)

  11. Chithra Chakra, N.; Song, K.Y.; Gupta, M.M.; Saraf, D.N.: An innovative neural forecast of cumulative oil production from a petroleum reservoir employing higher-order neural networks (HONNs). J. Pet. Sci. Eng. 106, 18–33 (2013)

  12. Darwis S., Ruchjana B.N., Permadi A.K.: Robust decline curve analysis. J. Indones. Math. Soc. 15(2), 105–111 (2009)

    MATH  MathSciNet  Google Scholar 

  13. López-Yáñez I., Sheremetov L., Yáñez-Márquez C.: A novel associative model for time series data mining. Pattern Recogn. Lett. 41, 23–33 (2014)

    Article  Google Scholar 

  14. Batyrshin I.Z., Sheremetov L.: Perception-based approach to time series data mining. Appl. Soft. Comput. 8(3), 1211–1221 (2008)

    Article  Google Scholar 

  15. Chatfield, C.: Time-Series Forecasting. Chapman & Hall/CRC Press, Boca Raton, Florida (2002)

  16. Wang X., Smith-Miles K., Hyndman R.: Rule induction for forecasting method selection: meta-learning the characteristics of univariate time series. Neurocomputing 72(10), 2581–2594 (2009)

    Article  Google Scholar 

  17. Brown R.G.: Statistical Forecasting for Inventory Control. McGraw Hill, New York (1959)

    MATH  Google Scholar 

  18. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. Technical Report (1957)

  19. Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manag. Sci. 6(3), 324–342 (1960)

  20. Hyndman R.J., Koehler A.B., Snyder R.D., Grose S.: A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 18(3), 439–454 (2002)

    Article  Google Scholar 

  21. Hyndman R., Koehler A., Ord J., Snyder R.: Forecasting with Exponential Smoothing: The State Space Approach. Springer, Berlin (2008)

    Book  Google Scholar 

  22. Taylor J.W.: Exponential smoothing with a damped multiplicative trend. Int. J. Forecast. 19, 715–725 (2003)

    Article  Google Scholar 

  23. Rahuma K.M., Mohamed H., Hissein N., Giuma S.: Prediction of reservoir performance applying decline curve analysis. Int. J. Chem. Eng. Appl. 4, 74–77 (2013)

    Google Scholar 

  24. Fetkovich M., Vienot M., Bradley M., Kiesow U. et al.: Decline curve analysis using type curves: case histories. SPE Form. Eval. 2(04), 637–656 (1987)

    Article  Google Scholar 

  25. Morehouse, D.F.: Intricate puzzle of oil and gas “reserves growth”. Natural Gas Monthly, U.S. Department of Energy, Office of Oil and Gas, Energy Information Administration, vii-xx (1997)

  26. Fetkovich, M.: Decline curve analysis using type curves. J. Pet. Technol. 32(6), 1065–1077 (1980)

  27. Mohaghegh S., Gaskari R.: An intelligent system’s approach for revitalization of brown fields using only production rate data. Int. J. Eng. 22(1), 89–106 (2009)

    Google Scholar 

  28. Arps J.: Analysis of decline curves. Trans. AIME 160, 228–247 (1945)

    Article  Google Scholar 

  29. Lyons, W.C.; Plisga, G.J.: Standard Handbook of Petroleum and Natural Gas Engineering, 2nd edn. Elsevier/Gulf Professional Publishing, Burlington, MA (2004)

  30. Li K., Horne R.N. et al.: A decline curve analysis model based on fluid flow mechanisms. SPE Reserv. Eval. Eng. 8(03), 197–204 (2005)

    Article  Google Scholar 

  31. Simon, D.: Evolutionary optimization algorithms. Wiley, Hoboken, New Jersey (2013)

  32. Jayakumar V., Raju R.: A simulated annealing algorithm for machine cell formation under uncertain production requirements. Arab. J. Sci. Eng. 39(10), 7345–7354 (2014)

    Article  Google Scholar 

  33. Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Cerny V.: Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  35. Reyes, E.; Steidley, C.:Optimization using simulated annealing. In: Northcon/98 Conference Proceedings, pp. 120–126. doi:10.1109/NORTHC.1998.731523 (1998)

  36. Holland J.: Adaption in natural and artificial systems. University of Michigan Press, Ann Arbor, MI (1975)

    MATH  Google Scholar 

  37. Goldberg D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA (1989)

    MATH  Google Scholar 

  38. Sanvicente-Sánchez, H.; Frausto-Solís, J.: A method to establish the cooling scheme in simulated annealing like algorithms. In: Computational Science and Its Applications–ICCSA 2004. Springer, pp. 755–763 (2004)

  39. Frausto-Solís, J.; Sánchez-Pérez, M.; Liñán-García, E.; Sánchez-Hernández, J.P.: Threshold temperature tuning simulated annealing for protein folding problem in small peptides. Comput. Appl. Math. 32(3), 471–482 (2013)

  40. Hyndman R.J., Khandakar Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3), 1–22 (2008)

    Google Scholar 

  41. Hyndman, R.: Forecasting: Principles and Practice. OTexts, Heathmont, Vic (2014)

  42. Lemke C., Gabrys B.: Meta-learning for time series forecasting and forecast combination. Neurocomputing 73(10), 2006–2016 (2010)

    Article  Google Scholar 

  43. Prudêncio R.B., Ludermir T.B.: Meta-learning approaches to selecting time series models. Neurocomputing 61, 121–137 (2004)

    Article  Google Scholar 

  44. Cristelli M., Zaccaria A., Pietronero L.: Universal relation between skewness and kurtosis in complex dynamics. Phys. Rev. E 85, 066,108 (2012) doi:10.1103/PhysRevE.85.066108

    Article  Google Scholar 

  45. Holdaway, K.R.: Let oil and gas talk to you: predicting production performance. In: Proceedings of the SAS\({\circledR}\)Global Forum 2012 Conference (2012)

  46. Zhang G.P.: An investigation of neural networks for linear time-series forecasting. Comput. Oper. Res. 28(12), 1183–1202 (2001)

    Article  MATH  Google Scholar 

  47. He, Z.; Yang, L.; Yen, J.; Wu, C.; et al.: Neural-network approach to predict well performance using available field data. In: SPE Western Regional Meeting, Society of Petroleum Engineers (SPE-68801-MS) (2001)

  48. Xie, H.; Tang, H.; Liao, Y.H.: Time series prediction based on NARX neural networks: an advanced approach. In: International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1275–1279. IEEE (2009)

  49. Menezes J.M.P. Jr., Barreto G.A.: Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 71(16), 3335–3343 (2008)

    Article  Google Scholar 

  50. Yang X., Zhang H., Zhou H.: A hybrid methodology for salinity time series forecasting based on wavelet transform and NARX neural networks. Arab. J. Sci. Eng. 39(10), 6895–6905 (2014)

    Article  Google Scholar 

  51. Sheremetov L., Cosultchi A., Gonzalez-Sánchez A., Martínez-Muñoz J., Jiménez-Aquino M.: Data-driven forecasting of naturally fractured reservoirs based on nonlinear autoregressive neural networks with exogenous input. J. Pet. Sci. Eng. 123, 106–119 (2014)

    Article  Google Scholar 

  52. Saemi M., Ahmadi M., Varjani A.Y.: Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. J. Pet. Sci. Eng. 59(1), 97–105 (2007)

    Article  Google Scholar 

  53. Leung F.H.F., Lam H.K., Ling S.H., Tam P.K.S.: Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans. Neural Netw. 14(1), 79–88 (2003)

    Article  Google Scholar 

  54. Donate J.P., Li X., Sánchez G.G., de Miguel A.S.: Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm. Neural Comput. Appl. 22(1), 11–20 (2013)

    Article  Google Scholar 

  55. Sedki A., Ouazar D., El Mazoudi E.: Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting. Expert Syst. Appl. 36(3), 4523–4527 (2009)

    Article  Google Scholar 

  56. Xiao-lin, Z.; Hai-wei, W.: Crude oil production predictive model based on support vector machine and parameters optimization algorithm. In: Zhang, W. (ed.) Advances in Intelligent and Soft Computing, vol. 162, 637–643 Springer, Berlin (2012). doi:10.1007/978-3-642-29455-6_88

  57. Makridakis S., Hibon M.: The M3-Competition: results, conclusions and implications. Int. J. Forecast. 16(4), 451–476 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Frausto-Solís.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frausto-Solís, J., Chi-Chim, M. & Sheremetov, L. Forecasting Oil Production Time Series with a Population-Based Simulated Annealing Method. Arab J Sci Eng 40, 1081–1096 (2015). https://doi.org/10.1007/s13369-015-1587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1587-z

Keywords

Navigation